AdvAnch 2015 – 1g **Uživatelský manuál** v. 1.0

Obsah

1.	POPIS APL	IKACE	3
	1.1.	Pracovní prostředí programu	3
	1.2.	Práce se soubory	4
	1.3.	Základní nástrojová lišta	4
2.	ZADÁVANÍ	HODNOT VSTUPNÍCH PARAMETRŮ	5
	2.1.	Geometrické charakteristiky zemní kotvy	5
	2.2.	Charakteristiky zemního prostředí v kontaktu s pláštěm kořene kotvy	
			6
	2.3.	Nastavení výpočtu	7
	2.4.	Vysokotlaká/tlaková injektáž	8
	2.5.	Sestavení t-z křivek	9
	2.6.	Zadání zatěžovacích stupňů, výsledky výpočtu	0
3.	PROVEDE	NÍ VÝPOČTU, VÝSLEDKY 1	1
Příl	oha A: Chyb	ové zprávy 1	2

1. POPIS APLIKACE

1.1. Pracovní prostředí programu

Základní nástrojová lišta

Sada karet pro zadávaní hodnot vstupních parametrů

Grafické zpracování výsledků: závislost (a) osové síly, (b) smykového napětí, (c) osové deformace na poloze, (d) pracovní diagram

Návod – Uživatelský manuál AdvAnch v. 2015 -1g

1.2. Práce se soubory

Projekty vytvořené v aplikaci je možné uložit a opětovně načíst pomocí souboru s příponou *.ac. Jde o textový soubor, ve kterém jsou uložené vstupné hodnoty výpočtu.

Program využívá pro svůj chod adresář *C:Vanalýza zemních kotev* (dále jen pracovní složka). Umístnění pracovní složky není možné měnit. Do této složky jsou exportovány některé vstupy, všechny výsledky výpočtů, informace o průběhu výpočtu v podobě následujících souborů:

Souřadnice_uzlů.txt	Souřadnice uzlů prvků kořene kotvy
Souřadnice_středů_prvků.txt	Souřadnice středů prvků kořene kotvy
Radiální_napětí_tuhost.txt	Radiální napětí působící ve středech prvků kořene
Přenosové funkce - Větev_zpevnění.txt	Část zpevnění t-z křivek pro každý prvek kořene kotvy (vztaženo k jeho středu)
Přenosové funkce - Větev_změkčení.txt	Část změkčení t-z křivek pro každý prvek kořene kotvy (vztaženo ke středu prvku)
Přenosové funkce - Celý průběh.txt	Kompletní t-z křivky pro každý prvek kořene kotvy (vztaženo ke středu prvku)
Základní_výsledky.txt	Soubor obsahující výsledky pro sestavení pracovního diagramu: <i>dosažena síla v hlavě</i> kotvy - deformace v hlavě kotvy
Podrobné_výsledky.txt	Soubor obsahující výsledky ve formátu: souřadnice středu + osová síla + celková deformace + mobilizované smykové napětí.
Informace_o_výpočtu.rtf	Přehled výpočetních vstupů
Záznam_o_výpočtu.rtf	Informace o průběhu výpočtu

1.3.Základní nástrojová lišta

Soubor \rightarrow Nový projel Soubor \rightarrow Otevřít proj Soubor \rightarrow Uložit proje	kt iekt ekt		Založení nového projektu Otevření stávajícího projektu Uložení stávajícího projektu
Pracovní prostory - info → Vvmazat	\rightarrow	Výpočetní	Vymazání prostoru s informacemi o výpočtu
Pracovní prostory - info \rightarrow Export	\rightarrow	Výpočetní	Export informací o výpočtu do souboru C:\Analýza zemních kotev\Informace_o_výpočtu.rtf
Pracovní prostory - $záznam \rightarrow Ukázat$	\rightarrow	Výpočetní	Zobrazení záznamu výpočtu
Pracovní prostory - $záznam \rightarrow Vvmazat$	\rightarrow	Výpočetní	Vymazání záznamu výpočtu
Pracovní prostory - záznam → Exportova	→ t	Výpočetní	Export informací o výpočtu do souboru C:\Analýza zemních kotev\Záznam_o_výpočtu.rtf
Nápověda → Manuál			Přístup ke třem návodům: (a) Teorie, (b) Uživatelský manuál, (c) Verifikace, tutoriál Všechny návody jsou ve formě .pdf uloženy ve
Nápověda \rightarrow O aplika	ici		Zde je uvedena základní identifikace programu a aktuální verze.

2. ZADÁVANÍ HODNOT VSTUPNÍCH PARAMETRŮ

V následujícím textu jsou prezentovány všechny karty pro zadávaní hodnot vstupních parametrů. Jsou zde také uvedeny odkazy na relevantní části manuálu *Teorie*, ve kterém jsou všechny veličiny podrobněji popsány.

2.1. Geometrické charakteristiky zemní kotvy

Geometrické charakteristikya základní deformační charakteristicky materiálů zemní kotvy se zadávají v kartě *Geometrie*. Pro načtení aktuálních dat o geometrii zemní kotvy je vždy potřebné použít příkaz **Geometrie - aktualizace dat**. Je možné také použít příkaz **Aktualizace všech hodnot**, který aktualizuje všechny vstupní údaje výpočtu ve všech kartách.

Geometrie	Geologie	Nastavení	Injektáž	T-z	Výpo	čet	
Základ	ní geome	trické char	akteristi	(y zen	nní kot	vy	
Volná o	lélka kot	ry			8,00	* *	m
Kořeno	vá délka	kotvy		Ì	10.00	*	m
Celkov	á délka k	otvy		1	18,00		m
Průměn	vrtu			ĺ	156	*	mm
Pozice	a sklon z	emní kotvy	/				
Sklon k	otvy		-		90,00	*	•
Hloubk	a hlavy k	otvy pod te	erénem	ĺ	0.00	* *	m
Charak	teristiky r	nateriálu tá	ihla a inje	ektáže	2		
Modul	pružnosti	materiálu i	njektáže		2	*	GPa
Modul	pružnosti	materiálu t	áhla		210	* *	GPa
Početl	an				6	*	-
Průřezo	vá ploch	a jednoho	lana	ĺ	150	*	mm2
					Geom	etrie	aktualizace dat

- 1) <u>Základní geometrické charakteristiky</u> zemní kotvy
 - a) Volná déka kotvy; **/**_v [m]
 - b) Délka kořene kotvy; *I_k* [m]
 - c) *Celková délka; *I_c*[m]
 - d) Průměr vrtu; *d_v* [mm]
- 2) Pozice a sklon zemní kotvy
 - a) Sklon zemní kotvy; α [°]
 - b) Úroveň hlavy kotvy pod terénem; h_p [m]
- 3) Vlastnosti táhla a zálivky (injektáže)
 - a) Modul pružnosti zálivky; Eg [GPa]
 - b) Modul pružnosti táhla; **E**s [GPa]
 - c) Počet lan kotvy; n_t [-]
 - d) Plocha jedno lana; A_{t1} [-]

Obr. 2 Karta Geometrie

*Vypočte se automaticky.

V následující tabulce jsou uvedeny odkazy na příslušné části manuálu *Teoretické podklady*, kde jsou dané veličiny podrobněji vysvětleny.

Tab. 1 Reference na návod Teoretické podklady

I _v	l _k	I _c	d_v	α	h _p	E_{g}	Es	n _t	A _{t1}
		kap. 1.1,	obr. 1-1				kap	. 2-2	

2.2. Charakteristiky zemního prostředí v kontaktu s pláštěm kořene kotvy

Charakteristiky zeminy se zadávají v kartě *Geologie*. Pro načtení aktuálních dat kotvy je vždy potřebné použít příkaz **Geologie - aktualizace dat**. Je možné také použít příkaz **Aktualizace všech hodnot**, který aktualizuje všechny vstupní údaje výpočtu ve všech kartách. Předpokládá se homogenní zemní prostředí.

Objemová tíha	20.00	- LN	l/m3
	20,00	• KI	w/m5
Parametry smykové pevnosti			
Neodvodněná smyková pevnost	100,00	🗘 kF)a
Nárůst neodvodněné pevnosti	25,00	🗘 kP	Pa/m
Efektivní úhel vnitřního tření	24,00	•	
Vrcholový úhel vnitřního tření	14.00	•	
Vrcholová koheze	85,00	🗧 kP	a
Kritický úhel vnitřního tření	20,00	÷	
Residuální úhel vnitřního tření	10,00	*	
Deformační parametry, ostatní			
Exponent deformačního modulu	0,35	-	
Číslo deformačního modulu	80,00	-	
Poissonovo číslo	0,35	-	
Kalibrační konstanta (deformace-napětí)	0,90	-	
OCR	6.50	- 14	

- 1) Základní údaje
 - a) Objemová hmotnost zeminy; γ[kN/m³]
- 2) <u>Pevnostní parametry</u>
 - a) Referenční hodnota neodvodněné smykové pevnosti; c_u^{ref} [kPa]
 - b) Přírůstek neodvodněné smykové pevnosti na 1m hloubky; *dc_u* [kPa]
 - c) Efektivní úhel vnitřního tření (pro výpočet K₀); *φ*´[°]
 - d) Vrcholový úhel vnitřního tření; φ_p [°]
 - e) Vrcholová soudržnost; c_p [kPa]
 - f) Úhel vnitřního tření v kritickém stavu; *φ_{crit}* [°]
 - g) Úhel vnitřního tření v residuálním stavu; *p*_{res} [°]
- 3) Deformační parametry, ostatní
 - a) Exponent deformačního modulu; m [-]
 - b) Číslo deformačního modulu; K [-]
 - C) Poissonovo číslo; ν [-]
 - d) *Kalibrační konstanta; R_f [-]
 - e) Stupeň překonsolidace; OCR [-]

Obr. 3 Karta Geologie

*Je nastavena doporučena výchozí hodnota tohoto parametru.

Tab. 2 Reference na návod	Teoretické podklady
---------------------------	---------------------

C u ^{ref}	∆c _u	φ	$\varphi_{\rm p}$	C _p	φ _{cs}	<i>φ</i> _r	m	K	v	R _f	OCR
(2-	36)	(2-26), (2-29)	ok	or. 2-6, o	br. 2-1	7	(2-2	20)	(2-21)	(2-18)	(2-26), (2-29)

2.3. Nastavení výpočtu

Parametry nastavení výpočtu se zadávají v kartě *Nastavení*. Pro načtení aktuálních dat kotvy je vždy potřebné použít příkaz **Nastavení - aktualizace dat**. Je možné také použít příkaz **Aktualizace všech hodnot**, který aktualizuje všechny vstupní údaje výpočtu ve všech kartách.

rační cyklus 1 - počet kroků 100 rační cyklus 2 - tolerance 10 - kN rační cyklus 2 - počet kroků 1000 race smykové tuhosti - počet kroků 20					
rační cyklus 2 - tolerance 10 kN rační cyklus 2 - počet kroků 1000 race smykové tuhosti - počet kroků 20				100	lterační cyklus 1 - počet kroků
rační cyklus 2 - počet kroků 1000 🛓 - race smykové tuhosti - počet kroků 20 🗼 -		kN	-	10	terační cyklus 2 - tolerance
race smykové tuhosti - počet kroků 20 🚔 -		-	-	1000	terační cyklus 2 - počet kroků
	, in the second s	2	* *	20	terace smykové tuhosti - počet kroků
statní parametry, pokročilé nastavení					Ostatní parametry, pokročilé nastavení
oloměr zóny vlivu 2,00 👻 m		m	*. *	2,00	^D oloměr zóny vlivu
ovolená deformace segmentu 1.00 👘 mm		mm	*	1.00	Dovolená deformace segmentu
ásobitel zatížení - pokles 0.05 🛓 -			*	0.05	Násobitel zatížení - pokles
		2	*	0.06	Násobitel zatížení - nárůst

-) <u>Rozčleněni na prvky</u>
- a) Počet prvků kořene kotvy; **n_{seg} [-]**
- <u>Nastavení iteračních cyklů</u>
- a) *Tolerance iteračního cyklu 1; *Tol_{it-1}* [mm]
- b) *Počet kroků iteračního cyklu 1; Nit-1 [-]
- c) *Tolerance iteračního cyklu 2; *Tol_{it-2}* [kN]
- d) *Počet kroků iteračního cyklu 1; Nit-2 [-]
- e) *lterace smykové tuhosti; N_G [-]
- 3) Ostatní parametry, pokročilé nastavení
 - a) Zóna vlivu; r_m [m]
 - b) *Dovolená deformace segmentu
 - c) *Násobek zatížení pokles; *M_{Ld}* [-]
 - d) *Násobek zatížení nárůst; *M_{Li}* [-]

Obr. 4 Karta Nastavení

*Je nastavena doporučena výchozí hodnota tohoto parametru.

$1 a_0$. $3 Neielelice ha havou leolelicke pouklaug$	Tab. 3 Refere	ence na návo	d Teoretické	podklady
---	---------------	--------------	--------------	----------

Tol _{it-1}	N _{it-1}	Tol _{it-2}	N _{it-2}	r _m
	kap	o. 3		(2-17), (2-19)

2.4. Vysokotlaká/tlaková injektáž

Parametry týkající se tlakové resp. dodatečné vysokotlaké injektáže a tahového namáháni materiálu injektáže se zadávají v kartě *Injektáž* Pro načtení aktuálních dat kotvy je vždy potřebné použít příkaz **Injektáž - aktualizace dat**. Je možné také použít příkaz **Aktualizace všech hodnot**, který aktualizuje všechny vstupní údaje výpočtu ve všech kartách.

Predpokladany prumer korene kotvy	262,00
Vzdálonost mozi inickěními otážomi	0.50 N
Ztráty injekční směsi	0.00 🔹 %
Teoretický průměr kořene kotvy	262.49 🚔 mm
Teoretický injekční tlak (1. prvek)	0.00 🚔 kPa
Konsolidace injektáže	10.00 🚔 %
Charakterisitiky materiálu injektáže při	tahovém namáhaní
Tahové zpevňování - ACI 318 model	
Limitní poměrné osové přetvoření	0.00000 -
Tahová pevnost materiálu injektáže	2,00 🌩 MPa

- 1) Tlaková injektáž, VTI
 - a) Způsob zahrnutí injektáže
 - Bez vlivu VTI
 Zvětšení průměru kořene
 Teorie expanze válcové dutiny (*Randolph et al., 1979*)
 - (Randolph et al., 1979) N. Dřednekládený průměr keřene: **d. Im**
 - b) Předpokládaný průměr kořene; d_k [mm]
 - c) Objem injektované směsi; *V_g* [l/etáž]
- d) Vzdálenost mezi injekčními etážemi; a_g
 [m]
- e) Ztráty injekční směsi; Δv_g [%]
- f) ⁺Teoretický průměr kořene; **d**_{k, teorie} [mm]
- g) [#]Teoretický injekční tlak; **p**_{g, teorie} [kPa]
- h) Konsolidace injektáže; *ɛ_{V,bleed}* [%]
- 2) Materiál injektáže v tahu
 - a) Způsob zahrnutí redukce tuhosti
 Bez redukce tuhosti
 - Redukce tuhosti jednouchý model
 - Tahové zpevňování CEB FIP model
 - Tahové zpevňování ACI 318 model
 - b) *Limitní osové přetvoření; $\varepsilon_{a,lim}$ [-]
 - c) Tahová pevnost materiálu injektáže; f_t [MPa]

Obr. 5 Karta Injektáž

- * Je nastavena doporučena výchozí hodnota tohoto parametru.
- ⁺ Vypočte se automaticky, na základě zadané spotřeby injektované směsi V_{α} .
- [#] Vypočte se v případě využití teorie expanze válcové dutiny.

d_k	$\mathcal{E}_{V,bleed}$	<i>E</i> a,lim	f _t
(2-27), (2-30)	(2-32)	kap.	. 2-3

2.5. Sestavení t-z křivek

Tvar větve zpevnění t-z křivek je závislý na hodnotách vstupních parametrů *Geologie* a *Injektáž*. Počet segmentů větve zpevnění a tvar větve změkčení se definují v kartě *T-z*. Pro načtení aktuálních dat kotvy je vždy potřebné použít příkaz *T-z křivky aktualizace dat*. Je možné také použít příkaz *Aktualizace všech hodnot*, který aktualizuje všechny vstupní údaje výpočtu ve všech kartách. Sestavené t-z křivky pro každý prvek jsou po aktualizaci dat zobrazeny v grafu pod kartou (obr. 7).

Obr. 7 T-z křivky sestavené pro 10 prvků kořene kotvy

- 1) Větev zpevňování
 - a) Počet segmentů větvě zpevnění
- 2) Větev změkčovaní
 - a) Přírůstek deformace pro dosažení smykového napětí τ₁; Δz₁ [mm]
 - b) Přírůstek deformace pro dosažení smykového napětí τ₂; Δ**z₂ [mm]**
 - c) Přírůstek deformace pro dosažení smykového napětí τ₃; Δ**z₃ [mm]**

Obr. 6 Karta T-z křivky

Tab. 5 Reference na návod	Teoretické podklady
---------------------------	---------------------

2.6. Zadání zatěžovacích stupňů, výsledky výpočtu

	Zatěžovací krok VSTUP [kN]	Zatěžovací krok VÝSTUP [kN]	Vypočtená deformace [mm]
١.	87	78,02	1.9
	200	208,15	5,68
	300	294,96	8,51
	400	404,93	12,23
	500	508,92	16,62
	550	558,24	19.6
	600	594,86	21,28
	650	642.1	25,77
*			

- a) *Předpokládaná trvalá deformace v hlavě kotvy pro první zatěžovací stupeň
- b) Zatěžovací stupně vstupní hodnoty
- c) Zatěžovací stupně výstupní (vypočtené) hodnoty
- d) Vypočtené trvalé deformace v hlavě kořene kotvy pro každý zatěžovací stupeň

Obr. 7 Karta Výpočet

*Je nastavena doporučena výchozí hodnota tohoto parametru

3. PROVEDENÍ VÝPOČTU, VÝSLEDKY

3.1.Zpuštění výpočtu

Před samotním zpuštěním výpočtu je vhodné zaktualizovat hodnoty všech vstupních parametrů příkazem **Aktualizace všech hodnot**. Výpočet se spouští příkazem **Výpočet** v kartě *Výpočet*. Úspěšný výpočet je zakončen zobrazením vypočtených sil a odpovídajících trvalých deformací v kartě *Výpočet*. Podrobné informace o průběhu výpočtu lze zobrazit příkazem **Pracovní prostory** \rightarrow **Výpočetní záznam** \rightarrow **Exportovat**.

3.2.Získané výstupy

- Vypočtené hodnoty zatížení a odpovídajících trvalých deformací v hlavě kořene kotvy. Tyto hodnoty jsou zobrazeny v tabulce v kartě Výpočet (obr. 7). Data jsou taktéž exportovány do souboru Základní_výsledky.txt.
- Závislost mezi osovou sílou a vzdáleností od hlavy kořene kotvy pro všechny zatěžovací stupně (obr. 8a).
- Závislost mezi smykovým napětím na plášti kořene kotvy a vzdáleností od hlavy kořene kotvy pro všechny zatěžovací stupně (obr. 8b).

Obr. 8 Příklad závislosti osové síly (a), smykového napětí (b) na vzdálenosti od hlavy kořene kotvy pro 8 zatěžovacích stupňů

- Závislost mezi trvalou deformací kořene kotvy a vzdáleností od hlavy kořene kotvy pro všechny zatěžovací stupně (obr. 9a).
- Pracovní diagram: závislost mezi zatížením a odpovídající trvalou deformací v hlavě kořene kotvy (obr. 9b).

Obr. 9 Příklad (a) závislosti mezi trvalou deformací kořene kotvy a vzdálenosti od hlavy kořene kotvy pro 8 zatěžovacích stupnů, (b) pracovního diagramu

Příloha A: Chybové zprávy

 "Chyba (1): Radiální napětí je menší než 0. Pokles radiálního napětí v důsledku konsolidace injektáže je příliš vysoký!"

Tento problém lze vyřešit snížením hodnoty parametru $\varepsilon_{V,bleed}$ (poměrné objemové přetvoření - snížení objemu materiálu injektáže v důsledku její konsolidace) v kartě *Injektáž*.

 "Chyba (2): Maximální počet iterací pro úroveň zatížení: kN byl dosažen. Upravte zatížení!"

Není splněna podmínka (tolerance) pro ukončení iteračního cyklu. K tomu nejčastěji dochází v případě, kdy je zadaná úroveň zatížení vyšší než kořenová únosnost.

 "Chyba (3): Maximální počet iterací pro výpočet elastické deformace segmentu: byl dosažen. Změňte úroveň zatížení nebo zvyšte hodnotu parametru Tol_{it-1}."

Není splněna podmínka (tolerance) pro ukončení iteračního cyklu. K tomu nejčastěji dochází v případě, kdy je zadaná úroveň zatížení vyšší než kořenová únosnost.